Amazon cover image
Image from Amazon.com

Photonic Crystals [electronic resource] : Towards Nanoscale Photonic Devices / by Jean-Michel Lourtioz, Henri Benisty, Vincent Berger, Jean-Michel Gérard, Daniel Maystre, Alexei Tchelnokov, Dominique Pagnoux.

By: Contributor(s): Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Edition: Second EditionDescription: XVIII, 514 p. 181 illus., 30 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540783473
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.36 23
LOC classification:
  • TA1671-1707
  • TA1501-1820
Online resources:
Contents:
Theoretical Models for Photonic Crystals -- Models for Infinite Crystals -- Models for Finite Crystals -- Quasi-Crystals and Archimedean Tilings -- Specific Features of Metallic Structures -- Optical Properties of Photonic Crystals -- Control of Electromagnetic Waves -- Refractive Properties of Photonic Crystals and Metamaterials -- Confinement of Light in Zero-Dimensional Microcavities -- Nonlinear Optics with Photonic Crystals -- Fabrication, Characterization and Applications of Photonic Bandgap Structures -- Planar Integrated Optics -- Microsources -- Photonic Crystal Fibres -- Three-Dimensional Structures in Optics -- Microwave and Terahertz Antennas and Circuits -- Conclusion and Perspectives.
In: Springer eBooksSummary: Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between optics, electromagnetism and solid state physics. Photonic Crystals was written by six specialists of nanophotonics, with the contribution of a specialist in optical fibres. This second edition was prepared to include the most recent developments of two-dimensional photonic crystal devices, as well as some of the last results reported on metamaterials. The work was coordinated by Jean-Michel Lourtioz, head of the Institut d'Électronique Fondamentale in Orsay.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Theoretical Models for Photonic Crystals -- Models for Infinite Crystals -- Models for Finite Crystals -- Quasi-Crystals and Archimedean Tilings -- Specific Features of Metallic Structures -- Optical Properties of Photonic Crystals -- Control of Electromagnetic Waves -- Refractive Properties of Photonic Crystals and Metamaterials -- Confinement of Light in Zero-Dimensional Microcavities -- Nonlinear Optics with Photonic Crystals -- Fabrication, Characterization and Applications of Photonic Bandgap Structures -- Planar Integrated Optics -- Microsources -- Photonic Crystal Fibres -- Three-Dimensional Structures in Optics -- Microwave and Terahertz Antennas and Circuits -- Conclusion and Perspectives.

Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between optics, electromagnetism and solid state physics. Photonic Crystals was written by six specialists of nanophotonics, with the contribution of a specialist in optical fibres. This second edition was prepared to include the most recent developments of two-dimensional photonic crystal devices, as well as some of the last results reported on metamaterials. The work was coordinated by Jean-Michel Lourtioz, head of the Institut d'Électronique Fondamentale in Orsay.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu