Amazon cover image
Image from Amazon.com

Grouping Multidimensional Data [electronic resource] : Recent Advances in Clustering / edited by Jacob Kogan, Charles Nicholas, Marc Teboulle.

Contributor(s): Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006Description: XII, 268 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540283492
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 005.74 23
LOC classification:
  • QA76.9.D35
Online resources:
Contents:
The Star Clustering Algorithm for Information Organization -- A Survey of Clustering Data Mining Techniques -- Similarity-Based Text Clustering: A Comparative Study -- Clustering Very Large Data Sets with Principal Direction Divisive Partitioning -- Clustering with Entropy-Like k-Means Algorithms -- Sampling Methods for Building Initial Partitions -- TMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections -- Criterion Functions for Clustering on High-Dimensional Data.
In: Springer eBooksSummary: Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection. Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview. The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

The Star Clustering Algorithm for Information Organization -- A Survey of Clustering Data Mining Techniques -- Similarity-Based Text Clustering: A Comparative Study -- Clustering Very Large Data Sets with Principal Direction Divisive Partitioning -- Clustering with Entropy-Like k-Means Algorithms -- Sampling Methods for Building Initial Partitions -- TMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections -- Criterion Functions for Clustering on High-Dimensional Data.

Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection. Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview. The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu