Amazon cover image
Image from Amazon.com

Classical and Stochastic Laplacian Growth [electronic resource] / by Björn Gustafsson, Razvan Teodorescu, Alexander Vasil’ev.

By: Contributor(s): Series: Advances in Mathematical Fluid MechanicsPublisher: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014Description: XIV, 317 p. 52 illus., 13 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319082875
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 530.15 23
LOC classification:
  • QA401-425
  • QC19.2-20.85
Online resources:
Contents:
1 Introduction and Background -- 2 Rational and Other Explicit Strong Solutions -- 3 Weak Solutions and Related Topics -- 4 Geometric Properties -- 5 Capacities and Isoperimetric Inequalities -- 6 Laplacian Growth and Random Matrix Theory -- 7 Integrability and Moments -- 8 Shape Evolution and Integrability -- 9 Stochastic Löwner and Löwner-Kufarev Evolution -- References -- List of Symbols -- Index.
In: Springer eBooksSummary: This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1 Introduction and Background -- 2 Rational and Other Explicit Strong Solutions -- 3 Weak Solutions and Related Topics -- 4 Geometric Properties -- 5 Capacities and Isoperimetric Inequalities -- 6 Laplacian Growth and Random Matrix Theory -- 7 Integrability and Moments -- 8 Shape Evolution and Integrability -- 9 Stochastic Löwner and Löwner-Kufarev Evolution -- References -- List of Symbols -- Index.

This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu