Amazon cover image
Image from Amazon.com

Exponentially Convergent Algorithms for Abstract Differential Equations [electronic resource] / by Ivan Gavrilyuk, Volodymyr Makarov, Vitalii Vasylyk.

By: Contributor(s): Series: Frontiers in MathematicsPublisher: Basel : Springer Basel, 2011Description: VIII, 180p. 12 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783034801195
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 510 23
LOC classification:
  • QA1-939
Online resources:
Contents:
Preface -- 1 Introduction -- 2 Preliminaries -- 3 The first-order equations -- 4 The second-order equations -- Appendix: Tensor-product approximations of the operator exponential -- Bibliography -- Index.
In: Springer eBooksSummary: This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as of partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which then can be applied to mathematical models of the real world. The problem class includes initial value problems (IVP) for first order differential equations with constant and variable unbounded operator coefficients in a Banach space (the heat equation is a simple example), boundary value problems for the second order elliptic differential equation with an operator coefficient (e.g. the Laplace equation), IVPs for the second order strongly damped differential equation as well as exponentially convergent methods to IVPs for the first order nonlinear differential equation with unbounded operator coefficients.  For researchers and students of numerical functional analysis, engineering and other sciences this book provides highly efficient algorithms for the numerical solution of differential equations and applied problems.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- 1 Introduction -- 2 Preliminaries -- 3 The first-order equations -- 4 The second-order equations -- Appendix: Tensor-product approximations of the operator exponential -- Bibliography -- Index.

This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as of partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which then can be applied to mathematical models of the real world. The problem class includes initial value problems (IVP) for first order differential equations with constant and variable unbounded operator coefficients in a Banach space (the heat equation is a simple example), boundary value problems for the second order elliptic differential equation with an operator coefficient (e.g. the Laplace equation), IVPs for the second order strongly damped differential equation as well as exponentially convergent methods to IVPs for the first order nonlinear differential equation with unbounded operator coefficients.  For researchers and students of numerical functional analysis, engineering and other sciences this book provides highly efficient algorithms for the numerical solution of differential equations and applied problems.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu