Amazon cover image
Image from Amazon.com

Data Fusion in Information Retrieval [electronic resource] / by Shengli Wu.

By: Contributor(s): Series: Adaptation, Learning, and Optimization ; 13Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012Description: XII, 228 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642288661
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q342
Online resources:
Contents:
Introduction -- Evaluation of Retrieval Results -- Score Normalization -- Observations and Analyses -- The Linear Combination Method -- A Geometric Framework for Data Fusion -- Ranking-Based Fusion -- Fusing Results from Overlapping Databases -- Application of the Data Fusion Technique.
In: Springer eBooksSummary: The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data fusion algorithms are discussed, analyzed and evaluated. A reader will find answers to the following questions, among others: -          What are the key factors that affect the performance of data fusion algorithms significantly? -          What conditions are favorable to data fusion algorithms? -          CombSum and CombMNZ, which one is better? and why? -          What is the rationale of using the linear combination method? -          How can the best fusion option be found under any given circumstances?
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Evaluation of Retrieval Results -- Score Normalization -- Observations and Analyses -- The Linear Combination Method -- A Geometric Framework for Data Fusion -- Ranking-Based Fusion -- Fusing Results from Overlapping Databases -- Application of the Data Fusion Technique.

The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data fusion algorithms are discussed, analyzed and evaluated. A reader will find answers to the following questions, among others: -          What are the key factors that affect the performance of data fusion algorithms significantly? -          What conditions are favorable to data fusion algorithms? -          CombSum and CombMNZ, which one is better? and why? -          What is the rationale of using the linear combination method? -          How can the best fusion option be found under any given circumstances?

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu