Amazon cover image
Image from Amazon.com

Optical Cooling Using the Dipole Force [electronic resource] / by André Xuereb.

By: Contributor(s): Series: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Description: XVI, 188 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642297151
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 539 23
LOC classification:
  • QC170-197
  • QC717.6-718.8
Online resources:
Contents:
Atomic Physics Theory and Cooling Methods -- Atom Field Interactions -- Trapping and Cooling Atoms -- Scattering Models and Their Applications -- The Transfer Matrix Model -- Applications of Transfer Matrices -- Three-Dimensional Scattering with an Optical Memory -- Experimental Work -- Experimental Setup -- A Guide for Future Experiments.
In: Springer eBooksSummary: This thesis unifies the dissipative dynamics of an atom, particle or structure within an optical field that is influenced by the position of the atom, particle or structure itself. This allows the identification and exploration of the fundamental ‘mirror-mediated’ mechanisms of cavity-mediated cooling leading to the proposal of a range of new techniques based upon the same underlying principles. It also reveals powerful mechanisms for the enhancement of the radiation force cooling of micromechanical systems, using both active gain and the resonance of a cavity to which the cooled species are external. This work has implications for the cooling not only of weakly-scattering individual atoms, ions and molecules, but also for highly reflective optomechanical structures ranging from nanometre-scale cantilevers to the metre-sized mirrors of massive interferometers.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Atomic Physics Theory and Cooling Methods -- Atom Field Interactions -- Trapping and Cooling Atoms -- Scattering Models and Their Applications -- The Transfer Matrix Model -- Applications of Transfer Matrices -- Three-Dimensional Scattering with an Optical Memory -- Experimental Work -- Experimental Setup -- A Guide for Future Experiments.

This thesis unifies the dissipative dynamics of an atom, particle or structure within an optical field that is influenced by the position of the atom, particle or structure itself. This allows the identification and exploration of the fundamental ‘mirror-mediated’ mechanisms of cavity-mediated cooling leading to the proposal of a range of new techniques based upon the same underlying principles. It also reveals powerful mechanisms for the enhancement of the radiation force cooling of micromechanical systems, using both active gain and the resonance of a cavity to which the cooled species are external. This work has implications for the cooling not only of weakly-scattering individual atoms, ions and molecules, but also for highly reflective optomechanical structures ranging from nanometre-scale cantilevers to the metre-sized mirrors of massive interferometers.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu