Amazon cover image
Image from Amazon.com

Quantitative Information Fusion for Hydrological Sciences [electronic resource] / edited by Xing Cai, T. -C. Jim Yeh.

Contributor(s): Series: Studies in Computational Intelligence ; 79Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Description: IX, 218 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540753841
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 551.4 23
LOC classification:
  • GB1001-1199.8
Online resources:
Contents:
Data Fusion Methods for Integrating Data-driven Hydrological Models -- A New Paradigm for Groundwater Modeling -- Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition -- Trajectory-Based Methods for Modeling and Characterization -- The Role of Streamline Models for Dynamic Data Assimilation in Petroleum Engineering and Hydrogeology -- Information Fusion in Regularized Inversion of Tomographic Pumping Tests -- Advancing the Use of Satellite Rainfall Datasets for Flood Prediction in Ungauged Basins: The Role of Scale, Hydrologic Process Controls and the Global Precipitation Measurement Mission -- Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity.
In: Springer eBooksSummary: In a rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? This book takes the angle of computational hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences. Intelligent computation and information fusion are the key words. The aim is to provide both established scientists and graduate students with a summary of recent developments in this topic. The chapters of this edited volume cover some of the most important ingredients for quantitative hydrological information fusion, including data fusion techniques, interactive computational environments, and supporting mathematical and numerical methods. Real-life applications of hydrological information fusion are also addressed.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Data Fusion Methods for Integrating Data-driven Hydrological Models -- A New Paradigm for Groundwater Modeling -- Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition -- Trajectory-Based Methods for Modeling and Characterization -- The Role of Streamline Models for Dynamic Data Assimilation in Petroleum Engineering and Hydrogeology -- Information Fusion in Regularized Inversion of Tomographic Pumping Tests -- Advancing the Use of Satellite Rainfall Datasets for Flood Prediction in Ungauged Basins: The Role of Scale, Hydrologic Process Controls and the Global Precipitation Measurement Mission -- Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity.

In a rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? This book takes the angle of computational hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences. Intelligent computation and information fusion are the key words. The aim is to provide both established scientists and graduate students with a summary of recent developments in this topic. The chapters of this edited volume cover some of the most important ingredients for quantitative hydrological information fusion, including data fusion techniques, interactive computational environments, and supporting mathematical and numerical methods. Real-life applications of hydrological information fusion are also addressed.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu