Amazon cover image
Image from Amazon.com

Crop Systems Biology [electronic resource] : Narrowing the gaps between crop modelling and genetics / edited by Xinyou Yin, Paul C. Struik.

Contributor(s): Publisher: Cham : Springer International Publishing : Imprint: Springer, 2016Edition: 1st ed. 2016Description: XI, 233 p. 39 illus., 20 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319205625
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 630 23
LOC classification:
  • S1-S972
Online resources:
Contents:
 Preface -- Author Index -- Chapter 1 Challenges in Integrating Genetic Control in Plant and Crop Models -- Chapter 2 Simulating Genotype - Phenotype Interaction Using Extended Functional- Structural Plant Models: Approaches, Applications and Potential Pitfalls -- Chapter 3 Modelling of Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, Genetics and Statistics -- Chapter 4 Process-Based Simulation Models Are Essential Tools for Virtual Profiling and Design of Ideotypes: Example of Fruit and Root -- Chapter 5 Heuristic Exploration of Theoretical Margins for Improving Adaptation of Rice through Crop-Model Assisted Phenotyping -- Chapter 6 Limited-Transpiration Trait for Increased Yield for Water-Limited Soybean: From Model to Phenotype to Genotype to Cultivars -- Chapter 7 Molecular Breeding for Complex Adaptive Traits – How Integrating Crop Ecophysiology and Modelling Can Enhance Efficiency -- Chapter 8 Crop Modeling Approaches for Predicting Phenotype of Grain Legumes with Linkage to Genetic Information -- Chapter 9 Modelling QTL-Trait-Crop Relationships: Past Experiences and Future Prospects -- Chapter 10 Crop Systems Biology - Where Are We and Where to Go? -- Index.
In: Springer eBooksSummary: The Work is an interdisciplinary research approach, combining modern genetics and genomics, traditional physiology and biochemistry, and advanced bioinformatics and crop modelling. It is a rapidly developing field and this book is testimony to its dynamic evolution. It provides examples of how gene regulatory and metabolic networks are included, in a spatially and temporally specific manner, in multi-scale crop modelling and how functional-structural plant modelling in combination with quantitative trait loci analysis is used to advance breeding for architectural traits. It also illustrates how prediction accuracy can profit from the large data sets available on environmental and genotypic variables by integrating physiological and statistical knowledge, and how in silico profiling can be used to unravel genotype × environment × management interactions, to analyse trade-offs between different crop characteristics or to assess yield benefits of specific traits. The Work also demonstrates very contrasting crop types that crop ecophysiology and functional modelling can assist in linking organizational scales, closing the genotype-to-phenotype gap, designing ideotypes for specific environments, evaluating suitability of specific environments for certain genotypes, and supporting model-assisted molecular breeding. This book will appeal to those interested in bridging fundamental plant biology and applied crop science using a diversity of systems modelling approaches.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

 Preface -- Author Index -- Chapter 1 Challenges in Integrating Genetic Control in Plant and Crop Models -- Chapter 2 Simulating Genotype - Phenotype Interaction Using Extended Functional- Structural Plant Models: Approaches, Applications and Potential Pitfalls -- Chapter 3 Modelling of Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, Genetics and Statistics -- Chapter 4 Process-Based Simulation Models Are Essential Tools for Virtual Profiling and Design of Ideotypes: Example of Fruit and Root -- Chapter 5 Heuristic Exploration of Theoretical Margins for Improving Adaptation of Rice through Crop-Model Assisted Phenotyping -- Chapter 6 Limited-Transpiration Trait for Increased Yield for Water-Limited Soybean: From Model to Phenotype to Genotype to Cultivars -- Chapter 7 Molecular Breeding for Complex Adaptive Traits – How Integrating Crop Ecophysiology and Modelling Can Enhance Efficiency -- Chapter 8 Crop Modeling Approaches for Predicting Phenotype of Grain Legumes with Linkage to Genetic Information -- Chapter 9 Modelling QTL-Trait-Crop Relationships: Past Experiences and Future Prospects -- Chapter 10 Crop Systems Biology - Where Are We and Where to Go? -- Index.

The Work is an interdisciplinary research approach, combining modern genetics and genomics, traditional physiology and biochemistry, and advanced bioinformatics and crop modelling. It is a rapidly developing field and this book is testimony to its dynamic evolution. It provides examples of how gene regulatory and metabolic networks are included, in a spatially and temporally specific manner, in multi-scale crop modelling and how functional-structural plant modelling in combination with quantitative trait loci analysis is used to advance breeding for architectural traits. It also illustrates how prediction accuracy can profit from the large data sets available on environmental and genotypic variables by integrating physiological and statistical knowledge, and how in silico profiling can be used to unravel genotype × environment × management interactions, to analyse trade-offs between different crop characteristics or to assess yield benefits of specific traits. The Work also demonstrates very contrasting crop types that crop ecophysiology and functional modelling can assist in linking organizational scales, closing the genotype-to-phenotype gap, designing ideotypes for specific environments, evaluating suitability of specific environments for certain genotypes, and supporting model-assisted molecular breeding. This book will appeal to those interested in bridging fundamental plant biology and applied crop science using a diversity of systems modelling approaches.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu