Robust Recognition via Information Theoretic Learning [electronic resource] / by Ran He, Baogang Hu, Xiaotong Yuan, Liang Wang.
Series: SpringerBriefs in Computer SciencePublisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XI, 110 p. 29 illus., 25 illus. in color. online resourceContent type:- text
- computer
- online resource
- 9783319074160
- 006.6 23
- T385
- TA1637-1638
- TK7882.P3

Introduction -- M-estimators and Half-quadratic Minimization -- Information Measures -- Correntropy and Linear Representation -- ℓ1 Regularized Correntropy -- Correntropy with Nonnegative Constraint.
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.