Amazon cover image
Image from Amazon.com

Optimal Interconnection Trees in the Plane [electronic resource] : Theory, Algorithms and Applications / by Marcus Brazil, Martin Zachariasen.

By: Contributor(s): Series: Algorithms and Combinatorics ; 29Publisher: Cham : Springer International Publishing : Imprint: Springer, 2015Description: XVII, 344 p. 150 illus., 135 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319139159
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 511.6 23
LOC classification:
  • QA164-167.2
Online resources:
Contents:
Preface:- 1 Euclidean and Minkowski Steiner Trees -- 2 Fixed Orientation Steiner Trees -- 3 Rectilinear Steiner Trees -- 4 Steiner Trees with Other Costs and Constraints -- 5 Steiner Trees in Graphs and Hypergraphs -- A Appendix.
In: Springer eBooksSummary: This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.  Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.  The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface:- 1 Euclidean and Minkowski Steiner Trees -- 2 Fixed Orientation Steiner Trees -- 3 Rectilinear Steiner Trees -- 4 Steiner Trees with Other Costs and Constraints -- 5 Steiner Trees in Graphs and Hypergraphs -- A Appendix.

This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.  Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.  The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu