Amazon cover image
Image from Amazon.com

Raman Imaging [electronic resource] : Techniques and Applications / edited by Arnaud Zoubir.

Contributor(s): Series: Springer Series in Optical Sciences ; 168Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Description: XIV, 386 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642282522
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.36 23
LOC classification:
  • QC350-467
  • TA1501-1820
  • QC392-449.5
  • TA1750-1750.22
Online resources:
Contents:
Instrumentation: -- Theory and instrumentation -- Imaging modes -- Micro-Raman Applications: -- Raman imaging in Semiconductor Physics and its application in Microelectronics -- Raman optimization of the properties of nano-phased materials -- Raman Imaging of meso- and nano-strutured materials -- Application of Raman-based images in the Earth sciences -- Uses of Raman Mapping and Imaging in Pharmaceutical Forensics -- Raman Microscopy: A Versatile Approach to Bio-imaging -- Mapping chemical and structural composition of biological and pharmaceutical samples by Raman and Surface-enhanced Raman scattering (SERS) spectroscopy -- Morphology and Chemical Structure: Agricultural Applications -- Tip-Enhanced Raman Spectroscopy: -- From stress and dopant distribution mappings in solar cells to applications of the surface enhanced Raman effect -- Tip-enhanced Raman and photoluminescence of nanotubes -- CARS spectroscopy, implementation to far-field and near-filed microscopy and applications.
In: Springer eBooksSummary: Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Instrumentation: -- Theory and instrumentation -- Imaging modes -- Micro-Raman Applications: -- Raman imaging in Semiconductor Physics and its application in Microelectronics -- Raman optimization of the properties of nano-phased materials -- Raman Imaging of meso- and nano-strutured materials -- Application of Raman-based images in the Earth sciences -- Uses of Raman Mapping and Imaging in Pharmaceutical Forensics -- Raman Microscopy: A Versatile Approach to Bio-imaging -- Mapping chemical and structural composition of biological and pharmaceutical samples by Raman and Surface-enhanced Raman scattering (SERS) spectroscopy -- Morphology and Chemical Structure: Agricultural Applications -- Tip-Enhanced Raman Spectroscopy: -- From stress and dopant distribution mappings in solar cells to applications of the surface enhanced Raman effect -- Tip-enhanced Raman and photoluminescence of nanotubes -- CARS spectroscopy, implementation to far-field and near-filed microscopy and applications.

Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu