Amazon cover image
Image from Amazon.com

Process intensification [electronic resource] : engineering for efficiency, sustainability and flexibility / David Reay, Colin Ramshaw, Adam Harvey.

By: Contributor(s): Series: Isotopes in organic chemistryPublisher: Oxford : Butterworth-Heinemann, 2013Copyright date: ©2013Edition: Second editionDescription: 1 online resource (xxxi, 591 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780080983059 (electronic bk.)
  • 0080983057 (electronic bk.)
Subject(s): Genre/Form: Additional physical formats: Print version:: Process intensification.LOC classification:
  • TP155.75
Online resources:
Contents:
Machine generated contents note: ch. 1 A Brief History of Process Intensification -- 1.1.Introduction -- 1.2.Rotating boilers -- 1.2.1.The rotating boiler/turbine concept -- 1.2.2.NASA work on rotating boilers -- 1.3.The rotating heat pipe -- 1.3.1.Rotating air conditioning unit -- 1.4.The chemical process industry -- the process intensification breakthrough at ICI -- 1.5.Separators -- 1.5.1.The Podbielniak extractor -- 1.5.2.Centrifugal evaporators -- 1.5.3.The still of John Moss -- 1.5.4.Extraction research in Bulgaria -- 1.6.Reactors -- 1.6.1.Catalytic plate reactors -- 1.6.2.Polymerisation reactors -- 1.6.3.Rotating fluidised bed reactor -- 1.6.4.Reactors for space experiments -- 1.6.5.Towards perfect reactors -- 1.7.Non-chemical industry-related applications of rotating heat and mass transfer -- 1.7.1.Rotating heat transfer devices -- 1.8.Where are we today? -- 1.8.1.Clean technologies -- 1.8.2.Integration of process intensification and renewable energies -- 1.8.3.PI and carbon capture -- 1.9.Summary -- References -- ch. 2 Process Intensification -- An Overview -- 2.1.Introduction -- 2.2.What is process intensification? -- 2.3.The original ICI PI strategy -- 2.4.The advantages of PI -- 2.4.1.Safety -- 2.4.2.The environment -- 2.4.3.Energy -- 2.4.4.The business process -- 2.5.Some obstacles to PI -- 2.6.A way forward -- 2.7.To whet the reader's appetite -- 2.8.Equipment summary -- finding your way around this book -- 2.9.Summary -- References -- ch. 3 The Mechanisms Involved in Process Intensification -- 3.1.Introduction -- 3.2.Intensified heat transfer -- the mechanisms involved -- 3.2.1.Classification of enhancement techniques -- 3.2.2.Passive enhancement techniques -- 3.2.3.Active enhancement methods -- 3.2.4.System impact of enhancement/intensification -- 3.3.Intensified mass transfer -- the mechanisms involved -- 3.3.1.Rotation -- 3.3.2.Vibration -- 3.3.3.Mixing -- 3.4.Electrically enhanced processes -- the mechanisms -- 3.5.Micro fluidics -- 3.5.1.Electrokinetics -- 3.5.2.Magnetohydrodynamics (MHD) -- 3.5.3.Opto-micro-fluidics -- 3.6.Pressure -- 3.7.Summary -- References -- ch. 4 Compact and Micro-heat Exchangers -- 4.1.Introduction -- 4.2.Compact heat exchangers -- 4.2.1.The plate heat exchanger -- 4.2.2.Printed circuit heat exchangers (PCHE) -- 4.2.3.The Chart-flo heat exchanger -- 4.2.4.Polymer film heat exchanger -- 4.2.5.Foam heat exchangers -- 4.2.6.Mesh heat exchangers -- 4.3.Micro-heat exchangers -- 4.4.What about small channels? -- 4.5.Nano-fluids -- 4.6.Summary -- References -- ch. 5 Reactors -- 5.1.Reactor engineering theory -- 5.1.1.Reaction kinetics -- 5.1.2.Residence time distributions (RTDs) -- 5.1.3.Heat and mass transfer in reactors -- 5.2.Spinning disc reactors -- 5.2.1.Exploitation of centrifugal fields -- 5.2.2.The desktop continuous process -- 5.2.3.The spinning disc reactor -- 5.2.4.The Nusselt flow model -- 5.2.5.Mass transfer -- 5.2.6.Heat transfer -- 5.2.7.Film-flow instability -- 5.2.8.Film-flow studies -- 5.2.9.Heat/mass transfer performance -- 5.2.10.Spinning disc reactor applications -- 5.3.Other rotating reactors -- 5.3.1.Rotor stator reactors: the STT reactor -- 5.3.2.Taylor-Couette reactor -- 5.3.3.Rotating packed-bed reactors -- 5.4.Oscillatory baffled reactors (OBRs) -- 5.4.1.Gas-liquid systems -- 5.4.2.Liquid-liquid systems -- 5.4.3.Heat transfer -- 5.4.4.OBR design -- 5.4.5.Biological applications -- 5.4.6.Solids suspension -- 5.4.7.Crystallisation -- 5.4.8.Oscillatory mesoreactors: scaling OBRs down -- 5.4.9.Case study -- 5.5.Micro-reactors (including HEX-reactors) -- 5.5.1.The catalytic plate reactor (CPR) -- 5.5.2.HEX-reactors -- 5.5.3.The corning micro-structured reactor -- 5.5.4.Constant power reactors -- 5.6.Field-enhanced reactions/reactors -- 5.6.1.Induction-heated reactor -- 5.6.2.Sonochemical reactors -- 5.6.3.Microwave enhancement -- 5.6.4.Plasma reactors -- 5.6.5.Laser-induced reactions -- 5.7.Reactive separations -- 5.7.1.Reactive distillation -- 5.7.2.Reactive extraction -- 5.7.3.Reactive adsorption -- 5.8.Membrane reactors -- 5.8.1.Tubular membrane reactor -- 5.8.2.Membrane slurry reactor -- 5.8.3.Biological applications of membrane reactors -- 5.9.Supercritical operation -- 5.9.1.Applications -- 5.10.Miscellaneous intensified reactor types -- 5.10.1.The Torbed reactor -- 5.10.2.Catalytic reactive extruders -- 5.10.3.Heat pipe reactors -- 5.11.Summary -- References -- ch. 6 Intensification of Separation Processes -- 6.1.Introduction -- 6.2.Distillation -- 6.2.1.Distillation -- dividing wall columns -- 6.2.2.Compact heat exchangers inside the column -- 6.2.3.Cyclic distillation systems -- 6.2.4.HiGee -- 6.3.Centrifuges -- 6.3.1.Conventional types -- 6.3.2.The gas centrifuge -- 6.4.Membranes -- 6.5.Drying -- 6.5.1.Electric drying and dewatering methods -- 6.5.2.Membranes for dehydration -- 6.6.Precipitation and crystallisation -- 6.6.1.The environment for particle formation -- 6.6.2.The spinning cone -- 6.6.3.Electric fields to aid crystallisation of thin films -- 6.7.Mop fan/deduster -- 6.7.1.Description of the equipment -- 6.7.2.Capture mechanism/efficiency -- 6.7.3.Applications -- 6.8.Electrolysis -- 6.8.1.Introduction -- 6.8.2.The effect of microgravity -- 6.8.3.The effect of high gravity -- 6.8.4.Current supply -- 6.8.5.Rotary electrolysis cell design -- 6.8.6.The static cell tests -- 6.8.7.The rotary cell experiments -- 6.9.Summary -- References -- ch. 7 Intensified Mixing -- 7.1.Introduction -- 7.2.Inline mixers -- 7.2.1.Static mixers -- 7.2.2.Ejectors -- 7.2.3.Rotor stator mixers -- 7.3.Mixing on a spinning disc -- 7.4.Induction-heated mixer -- 7.5.Summary -- References -- ch. 8 Application Areas -- Petrochemicals and Fine Chemicals -- 8.1.Introduction -- 8.2.Refineries -- 8.2.1.Catalytic plate reactor opportunities -- 8.2.2.More speculative opportunities -- 8.3.Bulk chemicals -- 8.3.1.Stripping and gas clean-up -- 8.3.2.Intensified methane reforming -- 8.3.3.The hydrocarbon chain -- 8.3.4.Reactive distillations for methyl and ethyl acetate -- 8.3.5.Formaldehyde from methanol using micro-reactors -- 8.3.6.Hydrogen peroxide production -- the Degussa PI route -- 8.3.7.Olefin hydroformylation -- use of a HEX-reactor -- 8.3.8.Polymerisation -- the use of spinning disc reactors -- 8.3.9.Akzo Nobel Chemicals -- reactive distillation -- 8.3.10.The gas turbine reactor -- a challenge for bulk chemical manufacture -- 8.3.11.Other bulk chemical applications in the literature -- 8.4.Fine chemicals and pharmaceuticals -- 8.4.1.Penicillin extraction -- 8.4.2.AstraZeneca work on continuous reactors -- 8.4.3.Micro-reactor for barium sulphate production -- 8.4.4.Spinning disc reactor for barium carbonate production -- 8.4.5.Spinning disc reactor for producing a drug intermediate -- 8.4.6.SDR in the fragrance industry -- 8.4.7.A continuous flow microwave reactor for production -- 8.4.8.Ultrasound and the intensification of micro-encapsulation -- 8.4.9.Powder coating technology -- Akzo Nobel powder coatings Ltd -- 8.4.10.Chiral amines -- scaling up in the Coflore flow reactor -- 8.4.11.Plant-wide PI in pharmaceuticals -- 8.5.Bioprocessing or processing of bioderived feedstock -- 8.5.1.Transesterification of vegetable oils -- 8.5.2.Bioethanol to ethylene in a micro-reactor -- 8.5.3.Base chemicals produced from biomass -- 8.6.Intensified carbon capture -- 8.6.1.Introduction -- 8.6.2.Carbon capture methods -- 8.6.3.Intensification of post-combustion carbon capture -- 8.6.4.Intensification of carbon capture using other techniques -- 8.7.Further reading -- 8.8.Summary -- References -- ch. 9 Application Areas -- Offshore Processing -- 9.1.Introduction -- 9.2.Some offshore scenarios -- 9.2.1.A view from BP a decade ago -- 9.2.2.More recent observations -- those of ConocoPhillips -- 9.2.3.One 2007 scenario -- 9.3.Offshore on platforms or subsea -- 9.3.1.Setting the scene -- 9.3.2.Down hole heavy crude oil processing -- 9.3.3.Compact heat exchangers offshore (and onshore) -- 9.3.4.Extending the PCHE concept to reactors -- 9.3.5.HiGee for enhanced oil recovery -- surfactant synthesis -- 9.3.6.Deoxygenation using high gravity fields -- 9.3.7.RF heating to recover oil from shale -- 9.4.Floating production, storage and offloading systems (FPSO) activities -- 9.5.Safety offshore -- can PI help? -- 9.6.Summary -- References -- ch. 10 Application Areas -- Miscellaneous Process Industries -- 10.1.Introduction -- 10.2.The nuclear industry -- 10.2.1.Highly compact heat exchangers for reactors -- 10.2.2.Nuclear reprocessing -- 10.2.3.Uranium enrichment by centrifuge -- 10.3.The food and drink sector -- 10.3.1.Barrier to PI -- 10.3.2.Sector characteristics -- 10.3.3.Induction-heated mixers -- 10.3.4.Electric fields for drying and cooking -- 10.3.5.Spinning discs in the food sector -- 10.3.6.Deaeration systems for beverage packaging -- 10.3.7.Intensified refrigeration -- 10.3.8.Pursuit dynamics intensified mixing -- 10.3.9.The Torbed reactor in food processing -- 10.4.Textiles -- 10.4.1.Textile preparation -- 10.4.2.Textile finishing -- 10.4.3.Textile effluent treatment -- 10.4.4.Laundry processes -- 10.4.5.Leather production -- 10.5.The metallurgical and glass industries -- 10.5.1.The metallurgical sector -- 10.5.2.The glass and ceramics industry -- 10.6.Aerospace -- 10.7.Biotechnology -- 10.7.1.Biodiesel production -- 10.7.2.Waste/effluent treatment -- 10.8.Summary -- References -- ch. 11 Application Areas -- the Built Environment, Electronics, and the Home -- 11.1.Introduction -- 11.2.Refrigeration/heat pumping -- 11.2.1.The Rotex chiller/heat pump -- 11.2.2.Compact heat exchangers in heat pumps -- 11.2.3.Micro-refrigerator for chip cooling -- 11.2.4.Absorption and adsorption cycles -- 11.3.Power generation -- 11.3.1.Miniature fuel cells -- 11.3.2.Micro turbines -- 11.3.3.Batteries -- 11.3.4.Pumps -- 11.3.5.Energy scavenging -- 11.4.Microelectronics -- 11.4.1.Micro-fluidics -- 11.4.2.Micro-heat pipes -- electronics thermal control -- 11.5.Summary -- References --
Note continued: ch. 12 Specifying, Manufacturing and Operating PI Plant -- 12.1.Introduction -- 12.2.Various approaches to adopting PI -- 12.2.1.Process integration -- 12.2.2.Britest process innovation -- 12.2.3.Process analysis and development -- a German approach -- 12.3.Initial assessment -- 12.3.1.Know your current process -- 12.3.2.Identify process limiting factors -- 12.3.3.Some key questions to address -- 12.4.Equipment specification -- 12.4.1.Concerns about fouling -- 12.4.2.Factors affecting control and their relevance to PI plant -- 12.4.3.Try it out! -- 12.5.Installation features of PI plant -- 12.6.Pointers to the successful operation of PI plant -- 12.7.The systematic approach to selecting PI technology -- 12.7.1.A process intensification methodology -- 12.8.The ultimate goal -- whole plant intensification -- 12.9.Learning from experience -- 12.10.Summary -- References -- Appendix: Applications of the PI Methodology -- 12.11.1.Case Studies 1-4 -- Appendix 1 Abbreviations Used -- Appendix 2 Nomenclature -- Appendix 3 Equipment Suppliers -- Appendix 4 R&D Organisations, Consultants and Miscellaneous Groups Active in PI -- Appendix 5 A Selection of Other Useful Contact Points, Including Networks and Websites.
Summary: This book provides a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Previous edition: 2008.

Description based on print version record.

Includes bibliographical references and index.

Machine generated contents note: ch. 1 A Brief History of Process Intensification -- 1.1.Introduction -- 1.2.Rotating boilers -- 1.2.1.The rotating boiler/turbine concept -- 1.2.2.NASA work on rotating boilers -- 1.3.The rotating heat pipe -- 1.3.1.Rotating air conditioning unit -- 1.4.The chemical process industry -- the process intensification breakthrough at ICI -- 1.5.Separators -- 1.5.1.The Podbielniak extractor -- 1.5.2.Centrifugal evaporators -- 1.5.3.The still of John Moss -- 1.5.4.Extraction research in Bulgaria -- 1.6.Reactors -- 1.6.1.Catalytic plate reactors -- 1.6.2.Polymerisation reactors -- 1.6.3.Rotating fluidised bed reactor -- 1.6.4.Reactors for space experiments -- 1.6.5.Towards perfect reactors -- 1.7.Non-chemical industry-related applications of rotating heat and mass transfer -- 1.7.1.Rotating heat transfer devices -- 1.8.Where are we today? -- 1.8.1.Clean technologies -- 1.8.2.Integration of process intensification and renewable energies -- 1.8.3.PI and carbon capture -- 1.9.Summary -- References -- ch. 2 Process Intensification -- An Overview -- 2.1.Introduction -- 2.2.What is process intensification? -- 2.3.The original ICI PI strategy -- 2.4.The advantages of PI -- 2.4.1.Safety -- 2.4.2.The environment -- 2.4.3.Energy -- 2.4.4.The business process -- 2.5.Some obstacles to PI -- 2.6.A way forward -- 2.7.To whet the reader's appetite -- 2.8.Equipment summary -- finding your way around this book -- 2.9.Summary -- References -- ch. 3 The Mechanisms Involved in Process Intensification -- 3.1.Introduction -- 3.2.Intensified heat transfer -- the mechanisms involved -- 3.2.1.Classification of enhancement techniques -- 3.2.2.Passive enhancement techniques -- 3.2.3.Active enhancement methods -- 3.2.4.System impact of enhancement/intensification -- 3.3.Intensified mass transfer -- the mechanisms involved -- 3.3.1.Rotation -- 3.3.2.Vibration -- 3.3.3.Mixing -- 3.4.Electrically enhanced processes -- the mechanisms -- 3.5.Micro fluidics -- 3.5.1.Electrokinetics -- 3.5.2.Magnetohydrodynamics (MHD) -- 3.5.3.Opto-micro-fluidics -- 3.6.Pressure -- 3.7.Summary -- References -- ch. 4 Compact and Micro-heat Exchangers -- 4.1.Introduction -- 4.2.Compact heat exchangers -- 4.2.1.The plate heat exchanger -- 4.2.2.Printed circuit heat exchangers (PCHE) -- 4.2.3.The Chart-flo heat exchanger -- 4.2.4.Polymer film heat exchanger -- 4.2.5.Foam heat exchangers -- 4.2.6.Mesh heat exchangers -- 4.3.Micro-heat exchangers -- 4.4.What about small channels? -- 4.5.Nano-fluids -- 4.6.Summary -- References -- ch. 5 Reactors -- 5.1.Reactor engineering theory -- 5.1.1.Reaction kinetics -- 5.1.2.Residence time distributions (RTDs) -- 5.1.3.Heat and mass transfer in reactors -- 5.2.Spinning disc reactors -- 5.2.1.Exploitation of centrifugal fields -- 5.2.2.The desktop continuous process -- 5.2.3.The spinning disc reactor -- 5.2.4.The Nusselt flow model -- 5.2.5.Mass transfer -- 5.2.6.Heat transfer -- 5.2.7.Film-flow instability -- 5.2.8.Film-flow studies -- 5.2.9.Heat/mass transfer performance -- 5.2.10.Spinning disc reactor applications -- 5.3.Other rotating reactors -- 5.3.1.Rotor stator reactors: the STT reactor -- 5.3.2.Taylor-Couette reactor -- 5.3.3.Rotating packed-bed reactors -- 5.4.Oscillatory baffled reactors (OBRs) -- 5.4.1.Gas-liquid systems -- 5.4.2.Liquid-liquid systems -- 5.4.3.Heat transfer -- 5.4.4.OBR design -- 5.4.5.Biological applications -- 5.4.6.Solids suspension -- 5.4.7.Crystallisation -- 5.4.8.Oscillatory mesoreactors: scaling OBRs down -- 5.4.9.Case study -- 5.5.Micro-reactors (including HEX-reactors) -- 5.5.1.The catalytic plate reactor (CPR) -- 5.5.2.HEX-reactors -- 5.5.3.The corning micro-structured reactor -- 5.5.4.Constant power reactors -- 5.6.Field-enhanced reactions/reactors -- 5.6.1.Induction-heated reactor -- 5.6.2.Sonochemical reactors -- 5.6.3.Microwave enhancement -- 5.6.4.Plasma reactors -- 5.6.5.Laser-induced reactions -- 5.7.Reactive separations -- 5.7.1.Reactive distillation -- 5.7.2.Reactive extraction -- 5.7.3.Reactive adsorption -- 5.8.Membrane reactors -- 5.8.1.Tubular membrane reactor -- 5.8.2.Membrane slurry reactor -- 5.8.3.Biological applications of membrane reactors -- 5.9.Supercritical operation -- 5.9.1.Applications -- 5.10.Miscellaneous intensified reactor types -- 5.10.1.The Torbed reactor -- 5.10.2.Catalytic reactive extruders -- 5.10.3.Heat pipe reactors -- 5.11.Summary -- References -- ch. 6 Intensification of Separation Processes -- 6.1.Introduction -- 6.2.Distillation -- 6.2.1.Distillation -- dividing wall columns -- 6.2.2.Compact heat exchangers inside the column -- 6.2.3.Cyclic distillation systems -- 6.2.4.HiGee -- 6.3.Centrifuges -- 6.3.1.Conventional types -- 6.3.2.The gas centrifuge -- 6.4.Membranes -- 6.5.Drying -- 6.5.1.Electric drying and dewatering methods -- 6.5.2.Membranes for dehydration -- 6.6.Precipitation and crystallisation -- 6.6.1.The environment for particle formation -- 6.6.2.The spinning cone -- 6.6.3.Electric fields to aid crystallisation of thin films -- 6.7.Mop fan/deduster -- 6.7.1.Description of the equipment -- 6.7.2.Capture mechanism/efficiency -- 6.7.3.Applications -- 6.8.Electrolysis -- 6.8.1.Introduction -- 6.8.2.The effect of microgravity -- 6.8.3.The effect of high gravity -- 6.8.4.Current supply -- 6.8.5.Rotary electrolysis cell design -- 6.8.6.The static cell tests -- 6.8.7.The rotary cell experiments -- 6.9.Summary -- References -- ch. 7 Intensified Mixing -- 7.1.Introduction -- 7.2.Inline mixers -- 7.2.1.Static mixers -- 7.2.2.Ejectors -- 7.2.3.Rotor stator mixers -- 7.3.Mixing on a spinning disc -- 7.4.Induction-heated mixer -- 7.5.Summary -- References -- ch. 8 Application Areas -- Petrochemicals and Fine Chemicals -- 8.1.Introduction -- 8.2.Refineries -- 8.2.1.Catalytic plate reactor opportunities -- 8.2.2.More speculative opportunities -- 8.3.Bulk chemicals -- 8.3.1.Stripping and gas clean-up -- 8.3.2.Intensified methane reforming -- 8.3.3.The hydrocarbon chain -- 8.3.4.Reactive distillations for methyl and ethyl acetate -- 8.3.5.Formaldehyde from methanol using micro-reactors -- 8.3.6.Hydrogen peroxide production -- the Degussa PI route -- 8.3.7.Olefin hydroformylation -- use of a HEX-reactor -- 8.3.8.Polymerisation -- the use of spinning disc reactors -- 8.3.9.Akzo Nobel Chemicals -- reactive distillation -- 8.3.10.The gas turbine reactor -- a challenge for bulk chemical manufacture -- 8.3.11.Other bulk chemical applications in the literature -- 8.4.Fine chemicals and pharmaceuticals -- 8.4.1.Penicillin extraction -- 8.4.2.AstraZeneca work on continuous reactors -- 8.4.3.Micro-reactor for barium sulphate production -- 8.4.4.Spinning disc reactor for barium carbonate production -- 8.4.5.Spinning disc reactor for producing a drug intermediate -- 8.4.6.SDR in the fragrance industry -- 8.4.7.A continuous flow microwave reactor for production -- 8.4.8.Ultrasound and the intensification of micro-encapsulation -- 8.4.9.Powder coating technology -- Akzo Nobel powder coatings Ltd -- 8.4.10.Chiral amines -- scaling up in the Coflore flow reactor -- 8.4.11.Plant-wide PI in pharmaceuticals -- 8.5.Bioprocessing or processing of bioderived feedstock -- 8.5.1.Transesterification of vegetable oils -- 8.5.2.Bioethanol to ethylene in a micro-reactor -- 8.5.3.Base chemicals produced from biomass -- 8.6.Intensified carbon capture -- 8.6.1.Introduction -- 8.6.2.Carbon capture methods -- 8.6.3.Intensification of post-combustion carbon capture -- 8.6.4.Intensification of carbon capture using other techniques -- 8.7.Further reading -- 8.8.Summary -- References -- ch. 9 Application Areas -- Offshore Processing -- 9.1.Introduction -- 9.2.Some offshore scenarios -- 9.2.1.A view from BP a decade ago -- 9.2.2.More recent observations -- those of ConocoPhillips -- 9.2.3.One 2007 scenario -- 9.3.Offshore on platforms or subsea -- 9.3.1.Setting the scene -- 9.3.2.Down hole heavy crude oil processing -- 9.3.3.Compact heat exchangers offshore (and onshore) -- 9.3.4.Extending the PCHE concept to reactors -- 9.3.5.HiGee for enhanced oil recovery -- surfactant synthesis -- 9.3.6.Deoxygenation using high gravity fields -- 9.3.7.RF heating to recover oil from shale -- 9.4.Floating production, storage and offloading systems (FPSO) activities -- 9.5.Safety offshore -- can PI help? -- 9.6.Summary -- References -- ch. 10 Application Areas -- Miscellaneous Process Industries -- 10.1.Introduction -- 10.2.The nuclear industry -- 10.2.1.Highly compact heat exchangers for reactors -- 10.2.2.Nuclear reprocessing -- 10.2.3.Uranium enrichment by centrifuge -- 10.3.The food and drink sector -- 10.3.1.Barrier to PI -- 10.3.2.Sector characteristics -- 10.3.3.Induction-heated mixers -- 10.3.4.Electric fields for drying and cooking -- 10.3.5.Spinning discs in the food sector -- 10.3.6.Deaeration systems for beverage packaging -- 10.3.7.Intensified refrigeration -- 10.3.8.Pursuit dynamics intensified mixing -- 10.3.9.The Torbed reactor in food processing -- 10.4.Textiles -- 10.4.1.Textile preparation -- 10.4.2.Textile finishing -- 10.4.3.Textile effluent treatment -- 10.4.4.Laundry processes -- 10.4.5.Leather production -- 10.5.The metallurgical and glass industries -- 10.5.1.The metallurgical sector -- 10.5.2.The glass and ceramics industry -- 10.6.Aerospace -- 10.7.Biotechnology -- 10.7.1.Biodiesel production -- 10.7.2.Waste/effluent treatment -- 10.8.Summary -- References -- ch. 11 Application Areas -- the Built Environment, Electronics, and the Home -- 11.1.Introduction -- 11.2.Refrigeration/heat pumping -- 11.2.1.The Rotex chiller/heat pump -- 11.2.2.Compact heat exchangers in heat pumps -- 11.2.3.Micro-refrigerator for chip cooling -- 11.2.4.Absorption and adsorption cycles -- 11.3.Power generation -- 11.3.1.Miniature fuel cells -- 11.3.2.Micro turbines -- 11.3.3.Batteries -- 11.3.4.Pumps -- 11.3.5.Energy scavenging -- 11.4.Microelectronics -- 11.4.1.Micro-fluidics -- 11.4.2.Micro-heat pipes -- electronics thermal control -- 11.5.Summary -- References --

Note continued: ch. 12 Specifying, Manufacturing and Operating PI Plant -- 12.1.Introduction -- 12.2.Various approaches to adopting PI -- 12.2.1.Process integration -- 12.2.2.Britest process innovation -- 12.2.3.Process analysis and development -- a German approach -- 12.3.Initial assessment -- 12.3.1.Know your current process -- 12.3.2.Identify process limiting factors -- 12.3.3.Some key questions to address -- 12.4.Equipment specification -- 12.4.1.Concerns about fouling -- 12.4.2.Factors affecting control and their relevance to PI plant -- 12.4.3.Try it out! -- 12.5.Installation features of PI plant -- 12.6.Pointers to the successful operation of PI plant -- 12.7.The systematic approach to selecting PI technology -- 12.7.1.A process intensification methodology -- 12.8.The ultimate goal -- whole plant intensification -- 12.9.Learning from experience -- 12.10.Summary -- References -- Appendix: Applications of the PI Methodology -- 12.11.1.Case Studies 1-4 -- Appendix 1 Abbreviations Used -- Appendix 2 Nomenclature -- Appendix 3 Equipment Suppliers -- Appendix 4 R&D Organisations, Consultants and Miscellaneous Groups Active in PI -- Appendix 5 A Selection of Other Useful Contact Points, Including Networks and Websites.

This book provides a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems.

Elsevier ScienceDirect All Books

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu